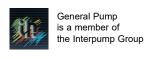


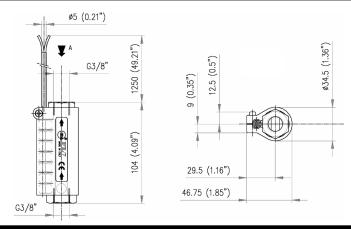
SPECIFICATIONS		
Operating Pressure:		5100 PSI
Max Pressure:		5650 PSI
Max Flow:		8.0 GPM
Activation Flow Rate	e: Horizontal:	1.5 GPM
	Vertical:	2.1 GPM
Max Volts:		250 V
Max Amps:		3 Amp
Max Temp:		180° F
Port Sizes:	Inlet:	3/8" NPT-M
	Outlet:	3/8" NPT-M
Dimensions:		4.4" x 3.3"
Weight:		0.86 lbs.
Materials:	Brass, Stainless Steel, Buna-N, Plastic	


^{*}May not be used for starting motors, will not handle start-up current.

(8)

(1)

PARTS LIST



YFL7SWITCH

DIMENSIONAL DRAWING

INSTALLATION

The flow switch detects the presence of water flow on the inside of the system by means of a piston which is shifted by the water itself. When the piston is moved by the water flow, the magnets contained internally stimulate a reed switch that closes the electric circuit. Can be installed horizontally or vertically. The water flow has to be directed as per the direction of the arrows inscribed on the plastic casing of the flow switch.

ELECTRICAL

For the connection of the electric circuit, see **Fig. 1**. In order to prevent damage it is necessary to install adequate protections for the system. There are many circuits to choose form, one of the most effective is seen in **Fig. 2**.

PROBLEMS & SOLUTIONS

Problems	Probable Causes	Solutions
The piston	Unsafficient flow	Check for supply and restriction to flow
does not more	Faulty assembly	Re-assemble considering the flow direction
	Foreign material on the piston	Clean and install a filter
Electric signal	Reed Damaged	Replace and install a protection circuit
missing	Dissconnected wires	Check and re-set connections
	Electric probes out of phase or dispaced	Check and re-set probe

MAINTENANCE

Every 400 working hours or 10,000 cycles, check the magnetic pin (item number 5 in the exploded view) and clean.

